
CSCI 210: Computer Architecture

Lecture 29: Pipelining

Stephen Checkoway

Slides from Cynthia Taylor

CS History: Berkeley RISC

• Developed by David Patterson at UC Berkeley between 1980 and 1984

• Patterson took a sabbatical to improve DEC’s Complex Instruction Set, and
instead decided the whole system was bad

• A 1978 Andrew Tannenbaum paper had shown a 10,000 line complex
program could be implemented using a simplified ISA with an 8-bit fixed
opcode
– And that 81% of constants were 0, 1 or 2!

– IBM internally discovered similar results

• First RISC chip came out in 1981

• RISC V is currently in active development as an open-source ISA

Pipelined Datapath

IF for sw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

ID for sw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

EX for sw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

MEM for sw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

WB for sw $t0, 4($t1)

$t0 is register 8, $t1 is register 9
$t0 holds 5
$t1 holds 0x4810CAB0
0x4810CAB0 holds 12

Should we force every instruction to go through all 5 stages? Can we break it
up, with R-type taking 4 cycles instead of 5?

Selection Yes/No Reason (Choose BEST answer)

A Yes Decreasing R-type to 4 cycles improves instruction

throughput

B Yes Decreasing R-type to 4 cycles improves instruction

latency

C No Decreasing R-type to 4 cycles causes hazards

D No Decreasing R-type to 4 cycles causes hazards and

doesn’t impact throughput

E No Decreasing R-type to 4 cycles causes hazards and

doesn’t impact latency

Pipeline Stages

Mixed Instructions in the Pipeline

IM Reg

A
LU Reg

IM Reg

A
LU DM Reg

CC1 CC2 CC3 CC4 CC5 CC6

lw

add

State of pipeline in a given cycle

Pipelined Control

How do we control our pipelined CPU?

A. We need to add new control signals.

B. We need to forward the control values to the correct stage.

C. We don’t need to do anything special; it will work the way it
is.

Pipeline Control

• IF Stage: read Instr Memory (always) and write PC + 4

• ID Stage: compute all control signals for subsequent stages

• EX, MEM, and WB stages have control signals

– The pipeline registers will need to store the control signals

Pipelined Control

Control signals derived from instruction

Pipelined Control: add $t0, $t1, $t2

$t1 holds 5
$t2 holds 6

EX Stage MEM Stage WB Stage

RegDst ALUOp1 ALUOp0 ALUSrc Brch MemRead MemWrite RegWrite Mem toReg

R 1 1 0 0 0 0 0 1 0

lw 0 0 0 1 0 1 0 1 1

sw X 0 0 1 0 0 1 0 X

beq X 0 1 0 1 0 0 0 X

Questions on Pipeline Control?

Dependencies & Forwarding

We can best solve these data hazards

A. By stalling.

B. By forwarding.

C. By combining forwards and
stalls.

D. By doing something else. sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

Data Hazards in ALU Instructions

• Consider this sequence:

 sub $2, $1,$3
and $12,$2,$5
or $13,$6,$2
add $14,$2,$2
sw $15,100($2)

• We can resolve hazards with forwarding

– How do we detect when to forward?

Forwarding

Data path

• Connect the outputs of EX and MEM stages to both ALU inputs
controlled by multiplexers

Control path

• Pass rs, rt, and rd register numbers through the pipeline
registers

• Add a forwarding unit to control the multiplexers

– Depends on RegWrite and rs/rt/rd from various stages

Detecting the Need to Forward

• Data hazards when
1a. EX/MEM.RegisterRd = ID/EX.RegisterRs

1b. EX/MEM.RegisterRd = ID/EX.RegisterRt

2a. MEM/WB.RegisterRd = ID/EX.RegisterRs

2b. MEM/WB.RegisterRd = ID/EX.RegisterRt

Fwd from
EX/MEM
pipeline reg

Fwd from
MEM/WB
pipeline reg

Detecting the Need to Forward

• But only if forwarding instruction will write to a register!

– EX/MEM.RegWrite, MEM/WB.RegWrite

• And only if Rd for that instruction is not $zero

– EX/MEM.RegisterRd ≠ 0,
MEM/WB.RegisterRd ≠ 0

Forwarding Paths
add $t0, $t1, $t2

$t1 holds 2
$t2 holds 3
$t6 holds 1
$t0 is register 8,
$t1 is 9, etc

sub $t3, $t0, $t6

If EX/MEM.RegisterRd = MEM/WB.RegisterRd = rs (i.e., both
pipeline registers contain a value that will be written to the same
register that’s about to be used for the ALU), which value should

be used by the ALU?

A. The one in EX/MEM

B. The one in MEM/WB

C. Either works since
both write to rs

D. The rs value from the
register file

add $t1, $t0, $t2
sub $t1, $t1, $t6
add $t8, $t1, $t7

Datapath with Forwarding

Reading

• Next lecture: Pipelined Datapath

– Section 5.7

	Slide 1: CSCI 210: Computer Architecture Lecture 29: Pipelining
	Slide 3: CS History: Berkeley RISC
	Slide 4: Pipelined Datapath
	Slide 5: IF for sw $t0, 4($t1)
	Slide 6: ID for sw $t0, 4($t1)
	Slide 7: EX for sw $t0, 4($t1)
	Slide 8: MEM for sw $t0, 4($t1)
	Slide 9: WB for sw $t0, 4($t1)
	Slide 10
	Slide 11: Mixed Instructions in the Pipeline
	Slide 12: State of pipeline in a given cycle
	Slide 13: Pipelined Control
	Slide 14: How do we control our pipelined CPU?
	Slide 15: Pipeline Control
	Slide 16: Pipelined Control
	Slide 17: Pipelined Control: add $t0, $t1, $t2
	Slide 18
	Slide 19: Questions on Pipeline Control?
	Slide 20: Dependencies & Forwarding
	Slide 21: We can best solve these data hazards
	Slide 22: Data Hazards in ALU Instructions
	Slide 23: Forwarding
	Slide 24: Detecting the Need to Forward
	Slide 25: Detecting the Need to Forward
	Slide 26: Forwarding Paths
	Slide 27: If EX/MEM.RegisterRd = MEM/WB.RegisterRd = rs (i.e., both pipeline registers contain a value that will be written to the same register that’s about to be used for the ALU), which value should be used by the ALU?
	Slide 28: Datapath with Forwarding
	Slide 29: Reading

